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Because of  the "all-or-none" character of  nervous activity, neural 
events and the relations among them can be treated by means of propo- 
sitional logic. I t  is found that the behavior of every net can be described 
in these terms, with the addition of more complicated logical means for 
nets containing circles; and that for any logical expression satisfying 
certain conditions, one can find a net behaving in the fashion it describes. 
I t  is shown that many particular choices among possible neurophysiologi- 
cal assumptions are equivalent, in the sense that for every net behav- 
ing under one assumption, there exists another net which behaves un- 
der the other and gives the same results, although perhaps not in the 
same time. Various applications of the calculus are discussed. 

I. Introduction 

T h e o r e t i c a l  n e u r o p h y s i o l o g y  r e s t s  on c e r t a i n  c a r d i n a l  a s s u m p -  
t ions .  T h e  n e r v o u s  s y s t e m  is a n e t  of  neu rons ,  e ach  h a v i n g  a s o m a  
and  a n  axon .  T h e i r  a d j u n c t i o n s ,  o r  s y n a p s e s ,  a r e  a l w a y s  b e t w e e n  the  
a x o n  of  one  n e u r o n  a n d  the  s o m a  of  ano the r .  A t  a n y  i n s t a n t  a n e u r o n  
h a s  some  th resho ld ,  w h i c h  exc i t a t i on  m u s t  exceed  to  i n i t i a t e  a n  im-  
pulse.  This ,  excep t  f o r  the  f a c t  and  t h e  t i m e  of  i t s  occur rence ,  is  de- 
t e r m i n e d  b y  t h e  neu ron ,  no t  b y  the  exc i t a t ion .  F r o m  t h e  p o i n t  o f  ex-  
c i t a t i on  the  i m pu l s e  is p r o p a g a t e d  to  all p a r t s  o f  t h e  neu ron .  T h e  
ve loc i ty  a long  the  a x o n  v a r i e s  d i r ec t ly  w i t h  i ts  d i a m e t e r ,  f r o m  less 
t h a n  one  m e t e r  p e r  second in t h in  axons ,  w h i c h  a r e  usua l ly  shor t ,  to  
m o r e  t h a n  150 m e t e r s  p e r  second in t h i c k  axons ,  wh ich  a r e  u sua l ly  
long .  T h e  t i m e  f o r  a x o n a l  conduc t ion  is consequen t ly  of  l i t t le  i m p o r -  
t ance  in d e t e r m i n i n g  the  t i m e  of  a r r i v a l  o f  i m p u l s e s  a t  po in t s  un-  
equa l ly  r e m o t e  f r o m  the  s a m e  source .  E x c i t a t i o n  a c r o s s  s y n a p s e s  oc- 
c u r s  p r e d o m i n a n t l y  f r o m  a x o n a l  t e r m i n a t i o n s  to  s o m a t a .  I t  is st i l l  a 
m o o t  po in t  w h e t h e r  th i s  depends  upon  i r r e c i p r o c i t y  of  ind iv idua l  syn-  
a p s e s  o r  m e r e l y  upon  p r e v a l e n t  a n a t o m i c a l  conf igura t ions .  T o  sup-  
pose  t he  l a t t e r  r equ i r e s  no h y p o t h e s i s  ad hoc a n d  exp la in s  k n o w n  ex- 
cept ions ,  bu t  a n y  a s s u m p t i o n  as  to  cause  is c o m p a t i b l e  w i t h  t h e  cal-  
culus  to  come.  No  case  is k n o w n  in wh ich  exc i t a t i on  t h r o u g h  a s ing le  
s y n a p s e  h a s  el ic i ted a n e r v o u s  i m p u l s e  in a n y  neu ron ,  w h e r e a s  a n y  
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neuron may be excited by impulses a r r iv ing  a t  a sufficient number  of 
neighboring synapses within the period of latent  addition, which lasts 
less than one quar te r  of  a millisecond. Observed temporal  summation 
of impulses at  g rea te r  intervals is impossible for  single neurons and 
empirically depends upon s t ructura l  propert ies  of the net. Between 
the arr ival  of impulses upon a neuron and its own propagated im- 
pulse there is a synaptic  delay of more than half  a millisecond. Dur-  
ing the first par t  of the nervous impulse the neuron is absolutely re- 
f rac to ry  to any stimulation. Thereaf te r  its excitabili ty re turns  rap- 
idly, in some cases reaching a value above normal f rom which it sinks 
again to a subnormal value, whence it re turns  slowly to normal. Fre-  
quent  act ivi ty augments  this subnormality.  Such specificity as is 
possessed by nervous impulses depends solely upon their  t ime and 
place and not  on any other  specificity of  nervous energies. Of late 
only inhibition has been seriously adduced to contravene this thesis. 
Inhibit ion is the terminat ion or  prevention of the  act ivi ty of one 
group of  neurons by concurrent  or  antecedent act ivi ty of a second 
group. Until  recently this could be explained on the supposition tha t  
previous act ivi ty of neurons of the second group might  so raise the  
thresholds of internuncial  neurons tha t  they could no longer be ex- 
cited by neurons of the first group, whereas  the  impulses of the first 
group must  sum with the impulses of  these internuncials to excite the  
now inhibited neurons. Today, some inhibitions have been shown to 
consume less than one millisecond. This excludes internuncials and 
requires  synapses through which impulses inhibit  tha t  neuron which 
is being st imulated by impulses through other  synapses.  As yet  ex- 
per iment  has not shown whether  the refractor iness  is relative or ab- 
solute. We will assume the la t ter  and demonstra te  tha t  the difference 
is immaterial  to our  argument .  E i the r  var ie ty  of refractor iness  can 
be accounted for  in ei ther  of two ways.  The " inhibi tory synapse" 
may  be of such a kind as to produce a substance which raSses the  
threshold of the neuron, or it may  be so placed tha t  the local disturb-  
ance produced by its excitation opposes the  al terat ion induced by the  
otherwise exci ta tory synapses.  Inasmuch as position is a l ready known 
to have such effects in the  case of  electrical stimulation, the first hy- 
pothesis ~s to be excluded unless and until it  be substantiated,  for  the  
second involves no new hypothesis.  We have, then, two explanations 
of inhibition based on the same general premises, differing only in 
the assumed nervous nets and, consequently, in the t ime required f o r  
inhibition. He rea f t e r  we shall r e fe r  to such nervous nets as equiva- 
lent in the extended sense. Since we are  concerned with propert ies  
of nets which are  invar iant  under  equivalence, we may  m a k e  the  
physical assumptions which are  most  convenient for  the calculus. 
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Many years ago one of us, by considerations impertinent to this 
argument, was led to conceive of the response of any neuron as fac- 
tually equivalent to a proposition which proposed its adequate stimu- 
lus. He therefore attempted to record the behavior of complicated 
nets in the notation of the symbolic logic of propositions. The "all- 
or-none" law of nervous activity is sufficient to insure that  the activ- 
ity of any neuron may be represented as a proposition. Physiological 
relations existing among nervous activities correspond, of course, to 
relations among the propositions; and the utility of the representa- 
tion depends upon the identity of these relations with those of the 
logic of propositions. To each reaction of any neuron there is a corre- 
sponding assertion of a simple proposition. This, in turn, implies 
either some other simple proposition or the disjunction or the con- 
junction, with or without negation, of similar propositions, according 
to the configuration of the synapses upon and the threshold of the 
neuron in question. Two difficulties appeared. The first concerns 
facilitation and extinction, in which antecedent activity temporarily 
alters responsiveness to subsequent stimulation of one and the same 
part  of the net. The second concerns learning, in which activities 
concurrent at some previous time have altered the net permanently, 
so that a stimulus which would previously have been inadequate is 
now adequate. But for nets undergoing both alterations, we can sub- 
stitute equivalent fictitious nets composed of neurons whose connec- 
tions and thresholds are unaltered. But one point must be made clear: 
neither of us conceives the formal equivalence to be a factual expla- 
nation. Per contra!--we regard facilitation and extinction as depen- 
dent upon continuous changes in threshold related to electrical and 
chemical variables, such as after-potentials and ionic concentrations; 
and learning as an enduring change which can survive sleep, anaes- 
thesia, convlusions and coma. The importance of the formal equiva- 
lence lies in this: that  the alterations actually underlying facilitation, 
extinction and learning ~in no way affect the conclusions which follow 
from the formal treatment of the activity of nervous nets, and the 
relations of the corresponding propositions remain those of the logic 
of propositions. 

The nervous system contains many circular paths, whose activity 
so regenerates the excitation of any participant neuron that reference 
to time past becomes indefinite, although it still implies that afferent 
activity has realized one of a certain class of configurations over time. 
Precise specification of these implications by means of recursive func- 
tions, and determination of those that can be embodied in the activity 
of nervous nets, completes the theory. 
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H. The Theory: Ne ts  Without  Circles 

We shall make the following physical assumptions for our cal- 
culus. 

1. The activity of the neuron is an "all-or-none" process. 
2. A certain fixed number of synapses must be excited within 

the period of latent addition in order to excite a neuron at any time, 
and this number is independent of previous activity and position on 
the neuron. 

3. The only significant delay within the nervous system is syn- 
aptic delay. 

4. The activity o f  any inhibitory synapse absolutely prevents 
excitation of the neuron at that time. 

5. The structure of the net does not change with time. 

To present the theory, the most appropriate symbolism is that of 
Language II of R. Carnap (1938), augmented with various notations 
drawn from B. Russell and A. N. Whitehead (1927), including the 
Principia conventions for dots. Typographical necessity, however, 
will compel us to use the upright 'E' for the existential operator in- 
stead of the inverted, and an arrow ('-~') for implication instead of 
the horseshoe. We shall also use the Carnap syntactical notations, but 
print them in boldface rather  than German type; and we shall intro- 
duce a functor S, whose value for a property P is the property which 
holds of a number when P holds of its predecessor; it is defined by 
' S ( P )  ( t )  .=-. P ( K x )  . t ~ x ' ) ' ;  the brackets around its argument will 
often be omitted, in which case this is understood to be the nearest 
predicate-expression [Pr] on the right. Moreover, we shall write 
S~Pr for S (S ( P r ) ) ,  etc. 

The neurons of a given net ~ may be assigned designations 
'c1', 'c~', . . . ,  'c~'. This done, we shall denote the property of a number, 
that a neuron c~ fires at a time which is that  number of synaptic de- 
lays from the origin of time, by 'N'  with the numeral i as subscript, 
so that  N~ (t) asserts that c~ fires at  the time t. N~ is called the action 
of e~. We shall sometimes regard the subscripted numeral of 'N'  as 
if it belonged to the object-language, and were in a place for a func- 
toral argument, so that  it might be replaced by a number-variable 
[z] and quantified; this enables us to abbreviate long but finite dis- 
junctions and conjunctions by the use of an operator. We shall era- 
ploy this locution quite generally for sequences of Pr;  it may be se- 
cured formally by an obvious disjunctive definition. The predicates 
'NI', 'N.~', . . . ,  comprise the syntactical class 'N'. 
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Let us define the peripheral afyerents of ~ as the neurons of ~( 
wi th  no axons synapsing upon them. Let N1, - - . ,  Np denote the  ac- 
tions of such neurons and N~+I, N~+~, . . . ,  N~ those of the rest. Then a 
solution of $~ will be a class of sentences of the fo rm S~: Np+l (zl) .=. 
Pr~ (N1, N~, . . . ,  Np, z~), where Pr~ contains no free variable save zl 
and no descriptive symbols save the N in the a rgument  [Arg] ,  and 
possibly some constant  sentences [sa] ; and such tha t  each S~ is t rue  
of ~ .  Conversely, given a Pr l  ( lp~ ,  lp12, . . . ,  ~p~p, z l ,  s) ,  containing 
no free variable save those in its Arg,  we shall say tha t  i t  is realizable 
in the narrow sense if  there exists a net $~ and a series of N~ in it  
such tha t  Nl(z~)  .----. P r I (N~ ,  N ~ , . . . ,  z l ,  sa~) is t rue  of it, where sa~ 
has the form N ( 0 ) .  We shall call it  realizable in the extended sense, 
or simply realizable, i f  for  some n S~(Pr l )  ( p l ,  . "  , pp, z~, s )  is 
realizable in the above sense, c~ is here the realizing neuron. We 
shall say of two laws of nervous excitation which are such tha t  every 
S which is realizable in ei ther  sense upon one supposition is also re- 
alizable, perhaps by a different net, upon the other, tha t  they are 
equivalent assumptions,  in tha t  sense. 

The following theorems about realizability all refer  to the ex- 
tended sense. In some cases, sharper  theorems about na r row re~liz- 
abili ty can be obtained; but  in addition to greater  complication in 
s ta tement  this were of little practical value, since our present neuroo 
physiological knowledge determines the law of excitation only to ex- 
tended equivalence, and the more precise theorems differ according 
to which possible assumption we make. Our less precise theorems, 
however, are invar iant  under  equivalence, and are still sufficient for  
all purposes in which the exact t ime for  impulses to pass through the 
whole net  is not crucial. 

Our central  problems may  now be stated exactly: first, to find an 
effective method of obtaining a set of computable S const i tut ing a 
solution of any given net ;  and second, to characterize the class of 
realizable S in an effective fashion. Material ly stated, the problems 
are to calculate the behavior of any net, and to find a net  which will 
behave in a specified way, when such a net  exists. 

A net  will be called cyclic if i t  contains a circle: i.e., if there ex- 
ists a chain c~, c~§ ...  of neurons on it, each member  of the  chain 
synapsing upon the next, with the same beginning and end. I f  a set 
of its neurons a~, c~ , . . . ,  cp is such tha t  its removal f rom ~ leaves 
it wi thout  circles, and no smaller class of  neurons has this property,  
the set is called a cyclic set, and its cardinal i ty  is the order of ~ .  In 
an impor tant  sense, as we shall see, the order of a net  is an index o f  
the complexity of its behavior. In particular,  nets of zero order have 
especially simple properties;  we shall discuss them first .  
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Let us define a temporal propositional expression (a TPE), des- 
ignat ing a temporal propositional function (TPF), by the following 
recursion:  

1. A ~p~ [z~] is a TPE, where  p~ is a predicate-variable.  
2. I f  S~ and S~ are  TPE containing the same f ree  individual 

variable, so are SSI,  S~vS~, SI.S~ and S~. ~ S ~ .  

3. Nothing else is a TPE. 

THEOREM I. 

Every net of order 0 c~n be solved in terms of temporal proposi- 
tional expressions. 

Let c~ be any neuron of  g~ with a threshold t~ > 0 ,  and let c~1, 
c~ ,  ... , c~, have respectively n ~ ,  n~:, ... , n~p exci ta tory synapses 
upon it. Let  cj~, ci : ,  - - . ,  c~q have inhibi tory synapses upon it. Let  ~ 
be  the  set of the subclasses of (n~l, n~:, .~., n~,) such tha t  the sum of 
their  members  exceeds 6~. We shall then be able to write,  in accord- 
ance with the assumptions mentioned above, 

N~(z~) . - - . S  t I~,~ ~ Nj~(z~). ~,~ ~H N~ (z~)} (1) 

where  the 'F~' and 'II' are  syntactical  symbols for  disjunctions and 
conjunctions which are finite in each case. Since an expression of 
this form can be wr i t ten  fo r  each c~ which is not  a peripheral  affer- 
ent, we can, by subst i tu t ing the corresponding expression in (1) for  
each Ns,, or N~, whose neuron is not a peripheral  afferent,  and re- 
peat ing the process on the result,  ul t imately come to an expression 
for  N~ in terms solely of peripheral ly afferent  N ,  since ~ is wi thout  
circles. Moreover,  this expression will be a TPE, since obviously (1) 
is; and Jt follows immediately f rom the definition tha t  the result  of  
subst i tu t ing a TPE for  a const i tuent  p (z) in a TPE is also one. 

THEOREM II. 

Every T P E  is realizable by a net of order zero. 

The functor  S obviously commutes with disjunction, conjunction, 
and negation. I t  is obvious that  the resul t  of  subst i tu t ing any S~, 
realizable in the  na r row sense (i.n.s.), fo r  the p(z) in a real~izable ex- 
pression $1 is i tself realizable i.n.s. ; one constructs  the  realizing net  by  
replacing the peripheral  afferents in the  net  for  $1 by  the  realizing neu- 
rons in the  nets fo r  the  S~. The one neuron net  realizes pl(zl) i.n.s., 
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and F igure  1-a shows a net  tha t  realizes Spl (zl)  and hence SS2,  i.n.s., 
if S: can be realized i.n.s. Now if S~ and $3 are realizable then 
SmS~ and S~S~ are realizable i.n.s., for  suitable m and n .  Hence so 
are S ~ S ~  and S~"Sa.  Now the nets of Figures  lb, c and d respectively 
realize S (p~ ( zl ) v p~ ( z~ ) ), S (p~(zD. p~ ( z~ ) ) ,  and S (p~ ( z~ ) . oo p~ ( z~ ) ) 
i.n.s. Hence S ~+'+~ (S, v S~), S ~§ (81 . $2), and S ~§ (S1. o~ S2) are 
realizable i.n.s. Therefore S, v $2 $1 . S~ S~ . oo $2 are realizable if 
$1 and S:~ are. By complete induction, all T P E  are  realizable. In this  
way all nets may be regarded as built  out of the fundamenta l  elements 
of Figures la ,  b, c, d, precisely as the temporal  propositional expres- 
sions are generated out of the operations of precession, disjunction, 
conjunction, and conjained negation. In part icular,  corresponding to 
any description of state, or distr ibution of the values true and false 
for  the actions of all the neurons of a net  save tha t  which makes 
them all false, a single neuron is constructible whose firing is a neces- 
sary  and sufficient condition for  the validity of tha t  description. More- 
over, there is a lways an indefinite number  of topologically different  
nets realizing any TPE.  

THEOREM I I I .  

Let  there be given a complex sentence S~ built up in any manner  out 
of e lementary sentences of the fo rm p (z~ - zz) where  zz is any nu- 
meral, by any of the propositional connections: negation, dis]unction, 
con]unction, implication, and equivalence. Then $1 is a TPE  wad 
only i f  i t  is false when  its consti tuent  p (zl - zz) are all assumed 
false--i.e., replaced by false sentences - -  or that the last line in its 
truth-table contains an 'F' , - -or  there is no term in i ts  Hilbert  dis- 
]unctive normal form composed exclnsively of negated terms.  

These la t ter  three  conditions are of course equivalent (Hilbert  
and Ackermann, 1938). We see by induction tha t  the  first of them is 
necessary, since p ( z l  - zz )  becomes false when it is replaced by a 
false sentence, and $1 v S~, S~ . S~ and $1 . ~ $2 are all false if 
both their  constituents are. We see tha t  the last condition is sufficient 
by remark ing  tha t  a disjunction is a T P E  when its consti tuents are, 
and tha t  any te rm 

8 1 . 8 . ~  . . . .  S ~ .  ~ S,,~+~. ~176 . . . .  ~ 8 .  

can be wr i t ten  as 

(8~.8.~ . . . .  Sin) . ~  (S~ ,vS~§  . . . .  v S , ) ,  

which is clearly a TPE.  

The method of the last theorems does in fac t  provide a very con- 
venient and workable procedure for  constructing nervous nets to or- 
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der, for  those cases where  there  is no reference to events indefinitely 
f a r  in the pas t  in the specification of the conditions. By  w a y  of ex- 
ample, we may  consider the case of heat  produced by  a t rans ient  
cooling. 

I f  a cold object  is held to the skin for  a moment  and removed, 
a sensation of heat  will be fel t ;  if  it is applied for  a longer time, the 
sensation will be only of" cold, with no prel iminary warmth,  however  
transient .  I t  is known tha t  one cutaneous receptor  is affected by heat, 
and another  by  cold. I f  we let N1 and N~ be the actions of  the respec- 
tive receptors  and N~ and N4 of neurons whose act ivi ty  implies a sen- 
sation of heat  and cold, our requirements  may  be wr i t ten  as 

N ~ ( t )  : ~- : N l ( t - 1 )  . v . N ~ ( t - 3 )  . ~ N ~ ( t - 2 )  
N 4 ( t )  . =--. N ~ ( t - 2 ) .  N ~ ( t - 1 )  

where  we suppose for  simplicity tha t  the required persistence in the 
sensation of cold is say two syaapt ic  delays, compared wi th  one for  
tha t  of heat. These conditions clearly fall under  Theorem III. A net  
may  consequently be constructed to realize them, by  the method of 
Theorem II. We begin by  wr i t ing  them in a fashion which exhibits 
them as buil t  out  of their  const i tuents  by the operations realized in 
Figures  la,  b, c, d: i.e., in the  form 

~ ( t ) .  -=. S~N1 (t) v SE (SN~ ( t ) ) .  ~ N~ (t) ]} 
N4 ( t )  . = - .  S (  [ S Y ~ ( t )  ] . Y.~ ( t )  ) . 

Fi r s t  we construct  a net  for  the function enclosed in the grea tes t  
number  of  brackets  and proceed outward  ; in this case we run a net  of 
the form shown in Figure  la  f rom cz to some neuron ca, say, so tha t  

Na ( t )  . ~ .  SN2  ( t ) .  

Next  introduce two nets of the forms lc  and ld,  both running f rom 
Ca and c: ,  and ending respectively at o4 and say cb. Then 

N4 ( t )  . ~ .  S [ N ~  ( t )  . N~_ ( t )  ] .  -~ .  S [  ( S N 2  ( t )  ) . N~ ( t )  ]. 
N b ( t )  . =--. S [ N r  . ~ N~ (t) ] .  ~ .  S [  (S~[2 ( t )  ) . oo N~(t)  ]. 

Finally, run  a net  of  the form lb  f rom Cl and c b to c8, and derive 

N~(t).  ~-. S [ ~ ( t )  v Nb(t)] 
�9 ~ .  S ( N ~  ( t )  v S [ ( S N : ( t ) ] .  ~ N~(t)  ) .  

These expressions for  N~ (t) and N~ (t)  are the ones desired;  and the 
realizing net i n  to to  is shown in F igure  le. 

This illusion makes very  clear the dependence of  the correspon- 
dence between perception and the "external  world"  upon the specific 
s t ructura l  propert ies  of the  inCervening nervous net. The same illu- 
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sion, of course, could also have been produced under  various other  
assumptions about  the  behavior  of  the cutaneous receptors,  wi th  cor- 
respon4ingly different nets. 

We shall now consider some theorems of  equivalence: i.e., theo- 
rems which demonstra te  the  essential identity, save for  time, of vari-  
ous al ternat ive laws of nervous excitation. Let  us first discuss the  
case of  relative inhibition. By this we mean the supposit ion tha t  the  
firing of an inhibi tory synapse does not  absolutely prevent  the  firing 
of the  neuron, bu t  merely raises its threshold, so tha t  a grea te r  num- 
ber  of exci ta tory synapses must  fire concurrent ly to fire i t  than  would 
otherwise be needed. We may suppose, losing no generali ty,  tha t  the  
increase .in threshold is uni ty  fo r  the firing of each such synapse;  we 
then have the theorem: 

THEOREM IV. 

Relative and absolute inhibition are equivalent in the extended 
sense. 

We may wri te  out  a law of nervous excitation a f t e r  the  fashion 
of (1) ,  bu t  employing the assumption of relat ive inhibition ins tead;  
inspection then shows that  this expression is a TPE. An example of  
the  replacement  of relative inhibition by  absolute is given by F igure  
l f .  The reverse  replacement  is even easier ;  we give the inhibi tory 
axons afferent to c~ any sufficiently large number  of  inhibi tory syn- 
apses apiece. 

Second, we consider the case of extinction. We may  wr i te  this 
in the form of a var ia t ion in the threshold 0~ ; a f t e r  the neuron c~ has  
fired; to the neares t  in teger- -and only to this approximat ion is the  
var ia t ion in threshold significant in natura l  forms of exci tat ion-- this  
may  be wr i t ten  as a sequence 0~ + bj for  ] synapt ic  delays a f t e r  firing, 
where  bs ---- 0 for  ~" large enough, say ] - -  M or  greater.  We  may  then 
state 

THEOREM V. 

Extinction is equivalent to absolute inhibition. 

For,  assuming relative inhibition to hold for  the moment,  we 
need merely  run  M circuits T~, T , ,  ... T .  containing respectively 1, 
2 ,  - . . ,  M neurons, such that  the  firing of each link in any is sufficient 
to fire the next, f rom the neuron c~ back to it, where  the end of the 
circuit  Tj has ju s t  bj inhibi tory synapses upon c , .  I t  is evident  tha t  
this will produce the desired results.  The reverse  subst i tut ion may  be 
accomplished by  the diagram of F igure  lg.  F rom the t rans i t iv i ty  of 



124 LOGICAL CALCULUS FOR NERVOUS ACTIVITY 

replacement,  we infer  the theorem. To this group of theorems also 
belongs the well-known 

THEOREM VI. 

Facilitation and temporal summation may be replaced by spatial 
summation. 

This is obvious: one need merely introduce a suitable sequence 
of delaying chains, of  increasing numbers  of synapses,  between the 
excit ing cell and the neuron whereon temporal  summation is desired 
to hold. The assumption of spatial summation will then give the re- 
quired results. See e.g. F, igure lh. This procedure had application in 
showing that  the observed temporal  summation in gross nets does not  
imply such a mechanism in Che interaction of individual neurons. 

The phenomena of  learning, which are of  a charac ter  persist-  
ing over most  physiological changes in nervous activity,  seem to re- 
quire the possibili ty of permanent  al terat ions in the s t ruc ture  of nets. 
The simplest  such al terat ion is the  format ion  of  new synapses or  
equivalent local depressions of threshold. We suppose that  some ax- 
onal terminat ions cannot at  first excite the  succeeding neuron;  bu t  if 
at  any time the neuron fires, and the axonal terminat ions are simul- 
taneously excited, they become synapses of the ordinary  kind, hence- 
for th  capable of excit ing the neuron. The loss of an inhibi tory syn- 
apse gives an entirely equivalent result. We shall then have 

THEOREM VII.  

Alterable synapses can be replaced by circles. 

This is accomplished by the method of Figure  li. I t  is also to be 
remarked that  a neuron which becomes and remains spontaneously 
act ive can likewise be replaced by a circle, which is set into act ivi ty 
by a peripheral  afferent  when the act ivi ty commences, and inhibited 
by one when it ceases. 

IH. The Theory: Nets wi th  Circles. 

The t rea tment  of nets which do not sa t i s fy  our  previous assump- 
tion of f reedom from circles is very  much more  difficult than tha t  case. 
This is largely a consequence of the possibili ty tha t  act ivi ty may  be 
set up in a circuit  and continue reverbera t ing  around it fo r  an in- 
definite period of time, so tha t  the realizable P r  may  involve refer-  
ence to past  events of an indefinite degree of remoteness.  Consider 
such a net  $~, say of order  p ,  and let cl ,  c~, . . . ,  c~ be a cyclic set  of 
neurons of g ( .  I t  is first of all clear f rom the definition tha t  every N, 
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of ~( can be expressed as a T P E ,  of N~,  N 2 ,  . . . ,  N~ and the absolute 
afferents; the solution of ~( involves then only the determination of 
expressions for the cyclic set. This done, we shall derive a set of ex- 
pressions [A] : 

N~(z~) . =  .Pr~[S~,~N~(z~) ,S~ , ' -N~(z l ) ,  . . . , S ~ , ~ N ~ ( z l ) ] ,  (2) 

where Pr~ also involves peripheral afferents. Now if n is the least 
common multiple of the n~j, we shall, by substituting their equiva- 
lents according to (2) in (3) for the N j ,  and repeating this process 
often enough on the result, obtain S of the form 

N~(za) . = . P r l [ S ~ N ~ ( z ~ ) , S ~ N ~ ( z l ) , . . . , S ~ N p ( z ~ ) ]  . (3) 

These expressions may be writ ten in the Hilbert disjunctive normal 
form as 

N~ (z~) . ~ .  ~ S~ H S ~ N~ (z~) H ~ S ~ Nj (z~), for  suitable ~, ( 4 )  
ae~ ieK j ~  

~agK 

where S~ is a T P E  of the absolute afferents of g( .  There exist some 
2p different sentences formed out of the p N~ by conjoining to the con- 
junction of some set of them the conjunction of the negations of the 
rest.  Denumerating these by X~ (zl) ,  X~ (z~), --. , X (z~), we may,  
by use of the expresaions (4), arrive at an equipollent set of equations 
of the form 

~P 

X~ ( z l ) .  =- . Y Pr~j (z l )  . S~X~ ( z l ) .  (5) 
i=1 

Now we import the subscripted numerals i,] into the object-language: 
i.e., define Prl  and Pr:  such that  P r l  (zz l , z l )  . --  . X~ (z l )  and Pr~ ( z z l ,  
zz~ , z~) . - - .  Pr~j ( z l )  are provable whenever zz~ and zz~ denote i and 
j respectively. 
Then we may rewrite (5) as 

(z~)zzp : Pr l  ( z ~ ,  z~) 
�9 = .  ( E z ~ ) z z p .  Pr~ ( z ~ ,  z ~ ,  z~ - z z ~ )  . P r l  ( z ~ ,  z~ - z z ~ )  (6) 

where zz~ denotes n and zzp denotes 2~. By repeated substitution we 
arrive at an expression 

(z~)zzp : Pr~(z~, z z ,  zz~) . = .  (Ez~)zzp (Ez~) z z p . . .  (Ez~)zzj~. 
Pr~ (z~, z~, z z ,  (zz~ ~ 1) ) .  Pr~ (z~, z3,  zz~ (zz~ - 1) ) . . . . .  (7)  

Pr~. (z~_~, z~, 0). Prl  (z~, 0), for any numeral zz~ which denotes s .  
This is easily shown by induction to be equipollent to 
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(z~)zzp : . Pr~ (zz , zz~zz=) : = : ( E l )  (z=) zz2 -- l f (z2 zz~) 
zzp.  f ( z z~  zz=) = z~. P r 2 ( f ( z z ~  (z2 + 1) ), (8) 

f ( z z~  z2) ) �9 P r ~ ( f ( O )  , O) 

and since this is the case for  all zz2 ,  it  is also t rue  that  

(z4) (z~)zz~ : Pr~ (z~ , z~) . ~ . ( E l )  (z2) (z4 -- 1) . f (z~) 
<~ zz~ . f (z4) - -  z~ f ( z~ ) - -  z~ . Pr~[ f  (z~ + 1), f (z~) , z2]. (9) 
Pr~[ f  (res (z4 , zz~) ) ,  res (z~ , zz,~) ], 

where  z z ,  denotes n ,  res (r ,s)  is the residue of  r rood s and zzp denotes 
2p. This may  be wr i t ten  in a less exact  w a y  as 

N~(t)  . - - .  (Er  (x) t - 1.  r  _-< 2". ~ ( t )  - - i .  
P[ep(x + 1), ~b (x) . N~(o) (0 ) ] ,  

where  x and t a re  also assumed divisible by n ,  and Pr~ denotes P .  
F rom the preceding remarks  we shall have 

THEOREM VIII. 

The  express ion  (9) for  neurons  of  the cyclic set  of  a ne t  ~ toge ther  
w i t h  cer ta in  T P E  express ing  the a c t w n s  of  o ther  neurons  in  t e rms  
o f  them,  cons t i tu te  a solut ion of  ~ ( .  

Consider now the quest ion of  the  realizabili ty of a set  of  S~,  A 
first necessary condition, demonstrable  by an easy induction, is tha t  

9i(z2) -= (z2) . 3 .  -= / pl 1 (10) 
[ P2 

should be true, wi th  similar  s ta tements  fo r  the other  f ree  p in S~: i.e., 
no nervous net  can take  account  of fu ture  peripheral  afferents. Any  
S~ sa t is fying this r equ i rement  can be replaced by an equipollent S of  
the form 

( g f )  (z2)z l  (zo)zzp : fe  Pr ,~  
: f ( z l ,  z : ,  z 3 )  ~-- 1 . - -  . Pz~ ( Z ~ )  (11) 

where  zzp denotes p ,  by  defining 

A 
P r ~  - - f [ ( z ~ )  (z~)z~(z~)zzp : . f ( z l  ,z~ ,z~) - -  0.v.f(z~ , z ~ , z ~ )  

- -  1 : f ( z ~ ,  z2 ,  z~)  -=  1 .  = - .  p ~  ( z D  : --> : S~]  . 

Consider now these series of classes as,  for  which 

N ~ ( t )  : -- : ( E r  ( x ) t ( m ) q  : ~ea~ : N ~ ( x )  . - . r  - - 1 .  

[i - -  q + 1 , . . . ,  M] (12) 
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holds for  some net. These will be called prehensible classes. Let  us 
define the  Boolean r ing generated by  a class of classes ~ as the aggre- 
gate  of the classes which can be formed f rom members  of ~ by re- 
peated application of the logical operat ions;  i.e., we put  

(, ,)  = p ' ~ [  ( ~ ,  ~ )  : ~ ~ K 
- - ) a e ~ : a , ~ . - - ' . -  a , a . # , a v # ~ ]  . 

We shall also define 

and 

B 

"aGO �9 - - .  ~ ( , , )  - ~ 'p  . . . .  , , ,  

~ ( , , )  = p  '~[ ((~ , ~ ) :  a s k  -- ,  a s,~. - ) .  

"R.(D = ~ ( K )  - ~ ' p ' - " , , ,  

- a ,  a . f l , a v f l , S " a e ~ ]  

a(9,t)-----~[(m).+(t+l,t,m)=~(m)]. 
The class ~(,(K) is formed f rom K in analogy wi th  ~ (K) ,  bu t  by  re- 
peated application not only of the logical operat ions bu t  also of  tha t  
which replaces a class of propert ies  P s a by S ( P ) s  S " a .  We shall 
then have the 

ImMMA 

Prl  (Pl , P~ , "" , Pro, zl)  is a T P E  if  and only if  

(z~) (p~,...,p,~) (Epm+~) : p~§  
(13) 

Pm+l (Zl)  ------- P r l  ( p ~  , P 2  , " "  , P,~ , z;) 

is t rue ; and it  is a T P E  not involving 'S' if  and only i f  this holds when 

'~e'  is replaced by '~ ' ,  and we then obtain 

THEOREM I X .  

A series of classes a l ,  a~., 
and only i f  

(Era) (En)  ( p ) n ( i )  (9)  : .  ( x ) m ~ ( x )  z 0 v ~ ( x )  - - 1  : -+ : (Eft) 

( E y ) m .  ~ ( y )  - - O . f l  s ' t~[~( (Ei)  . ?~-a~) ) . v .  ( x ) m .  
A 

~ ( x ) - - O . f l s ~ [ r ( ( E i ) . r ~ - a i ) ]  : ( t ) ( ~ )  : ~ e a ~ .  

q ( ~ , n t  + p )  . - ~ .  ( E f )  . f  e f l .  ( w ) m ( x ) t - 1 .  

~ ( n ( t + l )  + p , n x  + p , w )  - - ~ f ( n t  + p , n x + p , v ~ ) .  

�9 .. as is a series of prehensible classes i f  

(14) 
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The proof here follows directly from the lemma. The condition is 
necessary, since every net for which an expression of the form (4) 
can be written obviously verifies it, the ~'s being the characteristic 
functions of the S~ and the p for each ~ being the class whose desig- 
nation has the form H Pr~ H P r  s , where Pr~ denotes a~ for all k. Con- 

~ea ie.Sa 

versely, we may write an expression of the form (4) for a net g( 
fulfilling prehensible classes satisfying (14) by putting for the Pra 
P r  denoting {he ~'s, and a P r ,  written in the analogue for classes of 
the disjunctive normal form, and denoting the a corresponding to that  

, conjoined to it. Since every S of the form (4) is clearly realizable, 
we have the theorem. 

It is of some ,interest to consider the extent to which we can by 
knowledge of the present determine the whole past of various special 
nets: i.e., when we may construct a net the firing of the cyclic set of 
whose neurons requires the peripheral afferents to have had a set of 
past values specified by given functions ~ .  In this case the classes 
at of the last theorem reduced to unit classes; and the condition may 
be transformed into 

( E m , n )  ( p ) n ( i ,  ~f) (E l )  : .  ( x ) m :  ~(x)  - - - -0 .v .~(x)- -1  : 
r  + p )  : -~ : ( w ) m ( x ) t -  1 . ~ ( n ( t  + 1) 
+ p , n x + p , w ) ~ - ~ j ( n t + p , n x + p , w )  :.  
( u ,  v)  ( w ) m .  g)~(n(u + 1) + p ,  n u  + p ,  w) 
- - r  l )  + p , n v + p , w ) .  

On account of limitations of space, we have presented the above 
argument very sketchily; we propose to expand it and certain of its 
implications in a fur ther  publication. 

The condition of the last theorem is fairly simple in principle, 
though not in deta`il; its application to practical cases would, however, 
require the exploration of some 22. classes of functions, namely the 
members of ~({a~ , . . .  , a~)). Since each of these is a possible fl of 
Theorem IX, this result cannot be sharpened. But we may obtain a 
sufficient condition for the realizability of an S which is very easily 
applicable and probably covers most practical purposes. This is given 
by 

THEOREM X. 

Let us define a set K of S by the following recursion: 

1. Any T P E  and any T P E  whose arguments have been replaced 
by members of K belong to K;  

2. I f P r l ( z l )  is a member of K ,  then (z~)zl . Prl(z~), (Ez~)zl  . 
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P r l  (z~), and C~. (zl) . s belong to it, where  C ~  denotes the p roper ty  
of being congruent  to m modulo n ,  m < n .  

3. The  set  K has no f u r t h e r  m e m b e r s  

Then every member  of K is realizable. 

For,  if P r l  (zl) is realizable, nervous nets for  which 

N i  (z~) . =--. P r l  ( z l )  . SN~ (z~) 
N~ (z~) . = .  P r ,  ( z l )  v SN~ (z~) 

are  the expressions of equation (4) ,  realize (z~)z~ . P r l ( z D  and 
( E  z~)zl  . P r ~ ( z D  respectively;  and a simple circuit, c~, c~ , . . . ,  e~, 
of n links, each sufficient to excite the next, gives an expression 

Nm(z~)  . - - .  NI  (O) . C ~  

for  the last  form. By induction we derive the theorem. 
One more th ing is to be remarked in conclusion. I t  is easily 

shown: first, tha t  every net, if  furnished with a tape, scanners con- 
nected to afferents, and suitable efferents to per form the necessary 
motor-operations,  Call compute only such numbers  as can a Tur ing  
machine;  second, that  each of the la t ter  numbers  can be computed by 
such a net ;  and that  nets wi th  circles can be computed by  such a net ;  
and that  nets wi th  circles can compute, wi thout  scanners and a tape, 
some of the numbers  the machine can, bu t  no others, and not  all of 
them. This is of interest  as affording a psychological justification of 
the  Tur ing  definition of computabi l i ty  and its equivalents, Church's  

~ definability and Kleene's pr imit ive recursiveness:  I f  any number  
can be computed by  an organism, it is computable by these definitions, 
and conversely. 

I V .  Consequences  

Causality, which requires description of states and a law of nec- 
essary  connection relat ing them, has appeared in several forms in 
several sciences, but  never, except in statistics,  has it been as irre- 
ciprocal as in this theory. Specification for  any one t ime of afferent 
st imulation and of the  act ivi ty of all const i tuent  neurons, each an 
"all-or-none" affair, determines the state. Specification of the ner- 
vous net provides the law of necessary connection whereby  one can 
compute  f rom the description of any state tha t  of the succeeding 
state, bu t  the  inclusion of disjunctive relations prevents  complete de- 
terminat ion of the one before.  Moreover, the regenerat ive act ivi ty 
of Constituent circles renders  reference indefinite as to t ime past.  
Thus our knowledge of the world, including ourselves, is incomplete 
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as to space and indefinite as to time. This ignorance, implicit  in all 
our brains, is the counterpar t  of the abst ract ion which renders  our 
knowledge useful. The role of brains  in determining the epistemic 
relations of our theories to our observations and of these to the facts  
is all too clear, for  i t  is apparent  tha t  every idea and every sensation 
is realized by act ivi ty within that  net, and by no such act ivi ty are the 
actual  afferents fully determined. 

There is no theory  we may hold and no observation we can make 
that  will retain so much as its old defective reference to the  facts  if  
the net  be altered. Tinitus, paraestheaias,  hallucinations, delusions, 
confusions and disorientations intervene. Thus empiry  confirms tha t  
if our nets are  undefined, our  facts  a re  undefined, and to the "real"  
we can a t t r ibute  not  so much as one quali ty or  "form." With determi- 
nat ion of the net, the unknowable object  of knowledge, the " th ing in 
itself," ceases to be unknowable. 

To psychology, however  defined, specification of the net  would 
contr ibute  all tha t  could be achieved in tha t  field even if  the  analysis 
were  pushed to ul t imate psychic units or  "psychons," fo r  a psychon 
can be no less than the act ivi ty of a single neuron. Since tha t  act ivi ty 
is inherently propositional,  all psychic events have an intentional, or 
"semiotic," character .  The "all-or-none" law of these activities, and 
the conformity  of  their  relations to those of the logic of propositions, 
insure tha t  the relations of psychons are  those of the two-valued logic 
of propositions. Thus in psychology, introspective, behaviorist ic  or 
physiological, the  fundamental  relations are those of  two-valued logic. 

EXPRESSION FOR THE FIGURES 

In  the figure the neuron c~ is always marked with the numeral i upon the 
body of the cell, and the corresponding action is denoted by ' N '  with i as sub- 
script, as in the text. 

F i g u r e l a  N ~ ( t )  . ~-- . N l ( t - -  1) 

F i g u r e l b  N z ( t  ) . ~ . N l  ( t  - - 1 )  v N ~ ( t  - - 1 )  

Ffgu re l c  N ~ ( t )  . ~  . N ~ ( t - - 1 ) . N . e ( t - - 1 )  

F i g u r e l d  N3(t  ) . ~ . N ~ ( t - - 1 ) . o ~ N a ( t - - 1 )  

Figure le N3(t) : ~ : N ~ ( t  - -  1) . v .  N ~ ( t  - -  3). o o  N 2 ( t  _ 2) 

N 4 ( t )  . ~  . N 2 ( t - -  2 ) . N ~ ( t - -  1) 
F i g u r e l f  N 4 ( t  ) : ~ : e ~ N ~ ( t  --  1 ) . N ~ ( t  - -  1) v N a ( t  - -  1) . v . N ~ ( t  --  1). 

N ~ ( t  - -  1). N 3 ( t  - -  1) 
N 4 ( t  ) : -~  : co N ~ ( t  - -  2). N ~ ( t  - -  2:) v N ~ ( t  - -  2) . v �9 N ~ ( t  - -  2). 

N ~ ( t  - -  2). N 3 ( t  - -  2) 
Figure  lg  N a ( t )  . -~  . N ~ ( t  - -  2). ~ N ~ ( t  - -  3) 

F i g u r e l h  N 2 ( t  ) . -~  . N ~  ( t  - -  1 ) . N ~ ( t - -  2) 
Figure  l i  N 3 ( t  ) :~--: N ~ ( t - -  1) . v . N ~ ( t - -  1 ) . ( E x ) t - -  1 . N ~ ( x )  . N , ( x )  
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Hence arise constructional solutions of holistic problems involving 
the, differentiated continuum of sense awareness and the normative, 
perfective and resolvent properties of perception and execution. From 
the irreciprocity of causality it follows that even if the net be known, 
though we may predict future from present activities, we can deduce 
neither afferent from central, nor central from efferent, nor past from 
present activities--conclusions which are reinforced by the contra- 
dictory testimony of eye-witnesses, by the difficulty of diagnosing 
differentially the organically diseased, the hysteric and the malingerer, 
and by comparing one's own memories or recollections with his con- 
temporaneous records. Moreover, systems which so respond to the 
difference between afferents to a regenerative net and certain activity 
within that net, as to reduce the difference, exhibit purposive beha- 
vior; and organisms are known to possess many such systems, sub- 
serving homeostasis, appetition and attention. Thus both the formal 
and the final aspects of that  activity which we are wont to call mental 
are rigorously deduceable from present neurophysiology. The psy- 
chiatrist may take comfort from the obvious conclusion concerning 
causality--that, for prognosis, history is never necessary. He can 
take little from the equally valid conclusion that  his observables are 
explicable only in terms of nervous activities which, until recently, 
have been beyond his ken. The crux of this ignorance is that  infer- 
ence from any sample of overt behavior to nervous nets is not unique, 
whereas, of imaginable nets, only one in fact exists, and may, at  any 
moment, exhibit some unpredictable activity. Certainly for the psy- 
chiatr, ist it is more to the point that  in such systems "Mind" no longer 
"goes more ghostly than a ghost." Instead, diseased mentality can 
be understood without loss of scope or rigor, in the scientific ~erms of" 
neurophysiology. For neurology, the theory sharpens the distinction 
between nets necessary or merely sufficient for  given activities, and 
so clarifies the relations of disturbed structure to disturbed function. 
In its own domain the difference between equivalent nets and nets 
equivalent in the narrow sense indicates the appropri'ate use and im- 
portance of temporal studies of nervous activity: and to mathemati- 
cal biophysics the theory contributes a tool for  rigorous symbolic 
treatment of known nets and an easy method of constructing hypo- 
thetical nets of required properties. 
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