minicomplexity
length
definition

Given a short unary string, check that its length is exactly $h$.

details

For every $h\geq 1$, length$h$ (or just len$h$) is defined over the unary alphabet $\{\mathtt0\}$. Its instances are all unary strings of length $\leq h$. The unary string of length exactly $h$ is the only positive instance. All other instances are negative.

E.g., $\mathtt{00000}$ is the only positive instance of len$5$; all unary strings of length $\lt5$ are negative instances. (Strings of length $\gt5$ are not instances of the problem.)

notes

Introduced by Meyer Fischer 1971, as a problem of 1D against which the optimal 1NFA is no smaller than the optimal 1DFA. (The original definition allowed arbitrarily long instances, but this is not essential in this context.)

The name “length” is suggested by this site. huh?

See iterated length for the variant where the length must be a multiple of $h$, and long length for the variant where the length must be $2^h$.

non-member of:
– no record –
1D/uny
1D/uny 1D 21D e1D r1D f1D 1N 21N e1N r1N f1N RD 2RD eRD rRD fRD RN 2RN eRN rRN fRN SD 2SD eSD rSD fSD SN 2SN eSN rSN fSN 2D 22D e2D r2D f2D 2N 22N e2N r2N f2N re-1D re-21D re-e1D re-r1D re-f1D re-1N re-21N re-e1N re-r1N re-f1N re-RD re-2RD re-eRD re-rRD re-fRD re-RN re-2RN re-eRN re-rRN re-fRN re-SD re-2SD re-eSD re-rSD re-fSD re-SN re-2SN re-eSN re-rSN re-fSN re-2D re-22D re-e2D re-r2D re-f2D re-2N re-22N re-e2N re-r2N re-f2N co-1D co-21D co-e1D co-r1D co-f1D co-1N co-21N co-e1N co-r1N co-f1N co-RD co-2RD co-eRD co-rRD co-fRD co-RN co-2RN co-eRN co-rRN co-fRN co-SD co-2SD co-eSD co-rSD co-fSD co-SN co-2SN co-eSN co-rSN co-fSN co-2D co-22D co-e2D co-r2D co-f2D co-2N co-22N co-e2N co-r2N co-f2N rc-1D rc-21D rc-e1D rc-r1D rc-f1D rc-1N rc-21N rc-e1N rc-r1N rc-f1N rc-RD rc-2RD rc-eRD rc-rRD rc-fRD rc-RN rc-2RN rc-eRN rc-rRN rc-fRN rc-SD rc-2SD rc-eSD rc-rSD rc-fSD rc-SN rc-2SN rc-eSN rc-rSN rc-fSN rc-2D rc-22D rc-e2D rc-r2D rc-f2D rc-2N rc-22N rc-e2N rc-r2N rc-f2N 21D/uny e1D/uny r1D/uny f1D/uny 1N/uny 21N/uny e1N/uny r1N/uny f1N/uny RD/uny 2RD/uny eRD/uny rRD/uny fRD/uny RN/uny 2RN/uny eRN/uny rRN/uny fRN/uny SD/uny 2SD/uny eSD/uny rSD/uny fSD/uny SN/uny 2SN/uny eSN/uny rSN/uny fSN/uny 2D/uny 22D/uny e2D/uny r2D/uny f2D/uny 2N/uny 22N/uny e2N/uny r2N/uny f2N/uny re-1D/uny re-21D/uny re-e1D/uny re-r1D/uny re-f1D/uny re-1N/uny re-21N/uny re-e1N/uny re-r1N/uny re-f1N/uny re-RD/uny re-2RD/uny re-eRD/uny re-rRD/uny re-fRD/uny re-RN/uny re-2RN/uny re-eRN/uny re-rRN/uny re-fRN/uny re-SD/uny re-2SD/uny re-eSD/uny re-rSD/uny re-fSD/uny re-SN/uny re-2SN/uny re-eSN/uny re-rSN/uny re-fSN/uny re-2D/uny re-22D/uny re-e2D/uny re-r2D/uny re-f2D/uny re-2N/uny re-22N/uny re-e2N/uny re-r2N/uny re-f2N/uny co-1D/uny co-21D/uny co-e1D/uny co-r1D/uny co-f1D/uny co-1N/uny co-21N/uny co-e1N/uny co-r1N/uny co-f1N/uny co-RD/uny co-2RD/uny co-eRD/uny co-rRD/uny co-fRD/uny co-RN/uny co-2RN/uny co-eRN/uny co-rRN/uny co-fRN/uny co-SD/uny co-2SD/uny co-eSD/uny co-rSD/uny co-fSD/uny co-SN/uny co-2SN/uny co-eSN/uny co-rSN/uny co-fSN/uny co-2D/uny co-22D/uny co-e2D/uny co-r2D/uny co-f2D/uny co-2N/uny co-22N/uny co-e2N/uny co-r2N/uny co-f2N/uny rc-1D/uny rc-21D/uny rc-e1D/uny rc-r1D/uny rc-f1D/uny rc-1N/uny rc-21N/uny rc-e1N/uny rc-r1N/uny rc-f1N/uny rc-RD/uny rc-2RD/uny rc-eRD/uny rc-rRD/uny rc-fRD/uny rc-RN/uny rc-2RN/uny rc-eRN/uny rc-rRN/uny rc-fRN/uny rc-SD/uny rc-2SD/uny rc-eSD/uny rc-rSD/uny rc-fSD/uny rc-SN/uny rc-2SN/uny rc-eSN/uny rc-rSN/uny rc-fSN/uny rc-2D/uny rc-22D/uny rc-e2D/uny rc-r2D/uny rc-f2D/uny rc-2N/uny rc-22N/uny rc-e2N/uny rc-r2N/uny rc-f2N/uny
complete for:
– no record –
also hard for:
– no record –
at least as hard as:
– no record –
len$^r$:$\leq_\text{id}$
len$^r$:$\leq_\text{id}$ len$^r$:$\leq^\text{t}_\text{h}$ len$^r$:$\leq_\text{h}$ len$^r$:$\leq^\text{lac}_\text{1D}$ len$^r$:$\leq_\text{1D}$ len$^r$:$\leq^\text{lac}_\text{RD}$ len$^r$:$\leq_\text{RD}$ len$^r$:$\leq^\text{lac}_\text{2D}$ len$^r$:$\leq_\text{2D}$ len$^r$:$\leq^\text{lac}_\text{1N}$ len$^r$:$\leq_\text{1N}$
ilen:$\leq_\text{id}$ owl:$\leq^\text{t}_\text{h}$ owl:$\leq^\text{lac}_\text{1D}$ owl$^r$:$\leq^\text{t}_\text{h}$ owl$^r$:$\leq^\text{lac}_\text{1D}$ owl$^c$:$\leq^\text{t}_\text{h}$ owl$^c$:$\leq^\text{lac}_\text{1D}$ owl$^{rc}$:$\leq^\text{t}_\text{h}$ owl$^{rc}$:$\leq^\text{lac}_\text{1D}$ sep:$\leq^\text{t}_\text{h}$ sep:$\leq^\text{lac}_\text{1D}$ sep$^r$:$\leq^\text{t}_\text{h}$ sep$^r$:$\leq^\text{lac}_\text{1D}$ sep$^c$:$\leq^\text{t}_\text{h}$ sep$^c$:$\leq^\text{lac}_\text{1D}$ sep$^{rc}$:$\leq^\text{t}_\text{h}$ sep$^{rc}$:$\leq^\text{lac}_\text{1D}$ sp:$\leq^\text{t}_\text{h}$ sp:$\leq^\text{lac}_\text{1D}$ sp$^r$:$\leq^\text{t}_\text{h}$ sp$^r$:$\leq^\text{lac}_\text{1D}$ sp$^c$:$\leq^\text{t}_\text{h}$ sp$^c$:$\leq^\text{lac}_\text{1D}$ sp$^{rc}$:$\leq^\text{t}_\text{h}$ sp$^{rc}$:$\leq^\text{lac}_\text{1D}$
ilen:$\leq_\text{id}$ owl:$\leq^\text{t}_\text{h}$ owl:$\leq^\text{lac}_\text{1D}$ owl$^r$:$\leq^\text{t}_\text{h}$ owl$^r$:$\leq^\text{lac}_\text{1D}$ owl$^c$:$\leq^\text{t}_\text{h}$ owl$^c$:$\leq^\text{lac}_\text{1D}$ owl$^{rc}$:$\leq^\text{t}_\text{h}$ owl$^{rc}$:$\leq^\text{lac}_\text{1D}$ sep:$\leq^\text{t}_\text{h}$ sep:$\leq^\text{lac}_\text{1D}$ sep$^r$:$\leq^\text{t}_\text{h}$ sep$^r$:$\leq^\text{lac}_\text{1D}$ sep$^c$:$\leq^\text{t}_\text{h}$ sep$^c$:$\leq^\text{lac}_\text{1D}$ sep$^{rc}$:$\leq^\text{t}_\text{h}$ sep$^{rc}$:$\leq^\text{lac}_\text{1D}$ sp:$\leq^\text{t}_\text{h}$ sp:$\leq^\text{lac}_\text{1D}$ sp$^r$:$\leq^\text{t}_\text{h}$ sp$^r$:$\leq^\text{lac}_\text{1D}$ sp$^c$:$\leq^\text{t}_\text{h}$ sp$^c$:$\leq^\text{lac}_\text{1D}$ sp$^{rc}$:$\leq^\text{t}_\text{h}$ sp$^{rc}$:$\leq^\text{lac}_\text{1D}$ ilen:$\leq^\text{t}_\text{h}$ ilen:$\leq_\text{h}$ ilen:$\leq^\text{lac}_\text{1D}$ ilen:$\leq_\text{1D}$ ilen:$\leq^\text{lac}_\text{RD}$ ilen:$\leq_\text{RD}$ ilen:$\leq^\text{lac}_\text{2D}$ ilen:$\leq_\text{2D}$ ilen:$\leq^\text{lac}_\text{1N}$ ilen:$\leq_\text{1N}$ ilen$^r$:$\leq_\text{id}$ ilen$^r$:$\leq^\text{t}_\text{h}$ ilen$^r$:$\leq_\text{h}$ ilen$^r$:$\leq^\text{lac}_\text{1D}$ ilen$^r$:$\leq_\text{1D}$ ilen$^r$:$\leq^\text{lac}_\text{RD}$ ilen$^r$:$\leq_\text{RD}$ ilen$^r$:$\leq^\text{lac}_\text{2D}$ ilen$^r$:$\leq_\text{2D}$ ilen$^r$:$\leq^\text{lac}_\text{1N}$ ilen$^r$:$\leq_\text{1N}$ owl:$\leq_\text{h}$ owl:$\leq_\text{1D}$ owl:$\leq^\text{lac}_\text{RD}$ owl:$\leq_\text{RD}$ owl:$\leq^\text{lac}_\text{2D}$ owl:$\leq_\text{2D}$ owl:$\leq^\text{lac}_\text{1N}$ owl:$\leq_\text{1N}$ owl$^r$:$\leq_\text{h}$ owl$^r$:$\leq_\text{1D}$ owl$^r$:$\leq^\text{lac}_\text{RD}$ owl$^r$:$\leq_\text{RD}$ owl$^r$:$\leq^\text{lac}_\text{2D}$ owl$^r$:$\leq_\text{2D}$ owl$^r$:$\leq^\text{lac}_\text{1N}$ owl$^r$:$\leq_\text{1N}$ owl$^c$:$\leq_\text{h}$ owl$^c$:$\leq_\text{1D}$ owl$^c$:$\leq^\text{lac}_\text{RD}$ owl$^c$:$\leq_\text{RD}$ owl$^c$:$\leq^\text{lac}_\text{2D}$ owl$^c$:$\leq_\text{2D}$ owl$^c$:$\leq^\text{lac}_\text{1N}$ owl$^c$:$\leq_\text{1N}$ owl$^{rc}$:$\leq_\text{h}$ owl$^{rc}$:$\leq_\text{1D}$ owl$^{rc}$:$\leq^\text{lac}_\text{RD}$ owl$^{rc}$:$\leq_\text{RD}$ owl$^{rc}$:$\leq^\text{lac}_\text{2D}$ owl$^{rc}$:$\leq_\text{2D}$ owl$^{rc}$:$\leq^\text{lac}_\text{1N}$ owl$^{rc}$:$\leq_\text{1N}$ sep:$\leq_\text{h}$ sep:$\leq_\text{1D}$ sep:$\leq^\text{lac}_\text{RD}$ sep:$\leq_\text{RD}$ sep:$\leq^\text{lac}_\text{2D}$ sep:$\leq_\text{2D}$ sep:$\leq^\text{lac}_\text{1N}$ sep:$\leq_\text{1N}$ sep$^r$:$\leq_\text{h}$ sep$^r$:$\leq_\text{1D}$ sep$^r$:$\leq^\text{lac}_\text{RD}$ sep$^r$:$\leq_\text{RD}$ sep$^r$:$\leq^\text{lac}_\text{2D}$ sep$^r$:$\leq_\text{2D}$ sep$^r$:$\leq^\text{lac}_\text{1N}$ sep$^r$:$\leq_\text{1N}$ sep$^c$:$\leq_\text{h}$ sep$^c$:$\leq_\text{1D}$ sep$^c$:$\leq^\text{lac}_\text{RD}$ sep$^c$:$\leq_\text{RD}$ sep$^c$:$\leq^\text{lac}_\text{2D}$ sep$^c$:$\leq_\text{2D}$ sep$^c$:$\leq^\text{lac}_\text{1N}$ sep$^c$:$\leq_\text{1N}$ sep$^{rc}$:$\leq_\text{h}$ sep$^{rc}$:$\leq_\text{1D}$ sep$^{rc}$:$\leq^\text{lac}_\text{RD}$ sep$^{rc}$:$\leq_\text{RD}$ sep$^{rc}$:$\leq^\text{lac}_\text{2D}$ sep$^{rc}$:$\leq_\text{2D}$ sep$^{rc}$:$\leq^\text{lac}_\text{1N}$ sep$^{rc}$:$\leq_\text{1N}$ sp:$\leq_\text{h}$ sp:$\leq_\text{1D}$ sp:$\leq^\text{lac}_\text{RD}$ sp:$\leq_\text{RD}$ sp:$\leq^\text{lac}_\text{2D}$ sp:$\leq_\text{2D}$ sp:$\leq^\text{lac}_\text{1N}$ sp:$\leq_\text{1N}$ sp$^r$:$\leq_\text{h}$ sp$^r$:$\leq_\text{1D}$ sp$^r$:$\leq^\text{lac}_\text{RD}$ sp$^r$:$\leq_\text{RD}$ sp$^r$:$\leq^\text{lac}_\text{2D}$ sp$^r$:$\leq_\text{2D}$ sp$^r$:$\leq^\text{lac}_\text{1N}$ sp$^r$:$\leq_\text{1N}$ sp$^c$:$\leq_\text{h}$ sp$^c$:$\leq_\text{1D}$ sp$^c$:$\leq^\text{lac}_\text{RD}$ sp$^c$:$\leq_\text{RD}$ sp$^c$:$\leq^\text{lac}_\text{2D}$ sp$^c$:$\leq_\text{2D}$ sp$^c$:$\leq^\text{lac}_\text{1N}$ sp$^c$:$\leq_\text{1N}$ sp$^{rc}$:$\leq_\text{h}$ sp$^{rc}$:$\leq_\text{1D}$ sp$^{rc}$:$\leq^\text{lac}_\text{RD}$ sp$^{rc}$:$\leq_\text{RD}$ sp$^{rc}$:$\leq^\text{lac}_\text{2D}$ sp$^{rc}$:$\leq_\text{2D}$ sp$^{rc}$:$\leq^\text{lac}_\text{1N}$ sp$^{rc}$:$\leq_\text{1N}$ twl:$\leq^\text{t}_\text{h}$ twl:$\leq_\text{h}$ twl:$\leq^\text{lac}_\text{1D}$ twl:$\leq_\text{1D}$ twl:$\leq^\text{lac}_\text{RD}$ twl:$\leq_\text{RD}$ twl:$\leq^\text{lac}_\text{2D}$ twl:$\leq_\text{2D}$ twl:$\leq^\text{lac}_\text{1N}$ twl:$\leq_\text{1N}$ twl$^r$:$\leq^\text{t}_\text{h}$ twl$^r$:$\leq_\text{h}$ twl$^r$:$\leq^\text{lac}_\text{1D}$ twl$^r$:$\leq_\text{1D}$ twl$^r$:$\leq^\text{lac}_\text{RD}$ twl$^r$:$\leq_\text{RD}$ twl$^r$:$\leq^\text{lac}_\text{2D}$ twl$^r$:$\leq_\text{2D}$ twl$^r$:$\leq^\text{lac}_\text{1N}$ twl$^r$:$\leq_\text{1N}$ twl$^c$:$\leq^\text{t}_\text{h}$ twl$^c$:$\leq_\text{h}$ twl$^c$:$\leq^\text{lac}_\text{1D}$ twl$^c$:$\leq_\text{1D}$ twl$^c$:$\leq^\text{lac}_\text{RD}$ twl$^c$:$\leq_\text{RD}$ twl$^c$:$\leq^\text{lac}_\text{2D}$ twl$^c$:$\leq_\text{2D}$ twl$^c$:$\leq^\text{lac}_\text{1N}$ twl$^c$:$\leq_\text{1N}$ twl$^{rc}$:$\leq^\text{t}_\text{h}$ twl$^{rc}$:$\leq_\text{h}$ twl$^{rc}$:$\leq^\text{lac}_\text{1D}$ twl$^{rc}$:$\leq_\text{1D}$ twl$^{rc}$:$\leq^\text{lac}_\text{RD}$ twl$^{rc}$:$\leq_\text{RD}$ twl$^{rc}$:$\leq^\text{lac}_\text{2D}$ twl$^{rc}$:$\leq_\text{2D}$ twl$^{rc}$:$\leq^\text{lac}_\text{1N}$ twl$^{rc}$:$\leq_\text{1N}$